Symmetric error estimates for discontinuous Galerkin time-stepping schemes for optimal control problems constrained to evolutionary Stokes equations

نویسندگان

  • Konstantinos Chrysafinos
  • Efthimios N. Karatzas
چکیده

Abstract. We consider fully discrete finite element approximations of a distributed optimal control problem, constrained by the evolutionary Stokes equations. Conforming finite element methods for spatial discretization combined with discontinuous time-stepping Galerkin schemes are being used for the space-time discretization. Error estimates are proved under weak regularity hypotheses for the state, adjoint and control variables. The estimates are also applicable when high order schemes are being used. Computational examples validating our expected rates of convergence are also provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Estimates for Discontinuous Galerkin Time-Stepping Schemes for Robin Boundary Control Problems Constrained to Parabolic PDEs

We consider fully discrete finite element approximations of a Robin optimal boundary control problem, constrained by linear parabolic PDEs with rough initial data. Conforming finite element methods for spatial discretization combined with discontinuous time-stepping Galerkin schemes are being used for the space-time discretization. Error estimates are proved under weak regularity hypotheses for...

متن کامل

A Posteriori Error Estimates for Discontinuous Galerkin Time-Stepping Method for Optimal Control Problems Governed by Parabolic Equations

In this paper, we examine the discontinuous Galerkin (DG) finite element approximation to convex distributed optimal control problems governed by linear parabolic equations, where the discontinuous finite element method is used for the time discretization and the conforming finite element method is used for the space discretization. We derive a posteriori error estimates for both the state and ...

متن کامل

Adaptive discontinuous Galerkin methods for state constrained optimal control problems governed by convection diffusion equations

We study a posteriori error estimates for the numerical approximations of state constrained optimal control problems governed by convection diffusion equations, regularized by Moreau-Yosida and Lavrentiev-based techniques. The upwind Symmetric Interior Penalty Galerkin (SIPG) method is used as a discontinuous Galerkin (DG) discretization method. We derive different residual-based error indicato...

متن کامل

Discontinuous Galerkin approximations of the Stokes and Navier-Stokes equations

Numerical schemes to compute approximate solutions of the evolutionary Stokes and Navier-Stokes equations are studied. The schemes are discontinuous in time and conforming in space and of arbitrarily high order. Fully-discrete error estimates are derived and dependence of the viscosity constant is carefully tracked. It is shown that the errors are bounded by projection errors of the exact solut...

متن کامل

A Discontinuous Galerkin Time-Stepping Scheme for the Velocity Tracking Problem

The velocity tracking problem for the evolutionary Navier–Stokes equations in two dimensions is studied. The controls are of distributed type and are submitted to bound constraints. First and second order necessary and sufficient conditions are proved. A fully discrete scheme based on the discontinuous (in time) Galerkin approach, combined with conforming finite element subspaces in space, is p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2015